mdciao.nomenclature
Get and manipulate consensus nomenclature for GPCRs, G-proteins, and Kinases.
Uses local files and/or accesses the following databases and their public APIs
GPCRdb for GPCRs and G-proteins with Common Gα Numbering (CGN)
Please see the individual documentation of the Labeler classes for further references and cite them whenever you use these nomenclature schemes in your final publication.
Additionally, use mdciao.nomenclature.references
anytime to get more info.
Classes
|
Parent class to manage consensus notations. |
|
Obtain and manipulate GPCR generic residue numbering |
|
Obtain and manipulate G-protein generic residue numbering, i.e. 'Common Gα Numbering', CGN[1] provided by the GPCRdb. |
|
Obtain and manipulate Kinase-Ligand Interaction notation of the 85 pocket-residues of kinases. |
|
Use consensus labels for multiple sequence alignment. |
Quick access to some of the references used by |
Functions
Guess which fragments of a topology best align with a consensus nomenclature. |
|
Return fragments of the topology that match the reference sequence of |
|
Print out references relevant to this module |
|
Subdomain definitions form a list of consensus labels. |
References
These are some of the references most relevant to this module:
GPCRdb and naming schemes therein
Kooistra, A. J., Mordalski, S., Pándy-Szekeres, G., Esguerra, M., Mamyrbekov, A., Munk, C., … Gloriam, D. E. (2021). GPCRdb in 2021: Integrating GPCR sequence, structure and function. Nucleic Acids Research, 49(D1), D335–D343. https://doi.org/10.1093/nar/gkaa1080
Isberg, V., De Graaf, C., Bortolato, A., Cherezov, V., Katritch, V., Marshall, F. H., … Gloriam, D. E. (2015). Generic GPCR residue numbers - Aligning topology maps while minding the gaps. Trends in Pharmacological Sciences, 36(1), 22–31. https://doi.org/10.1016/j.tips.2014.11.001
Isberg, V., Mordalski, S., Munk, C., Rataj, K., Harpsøe, K., Hauser, A. S., … Gloriam, D. E. (2016). GPCRdb: An information system for G protein-coupled receptors. Nucleic Acids Research, 44(D1), D356–D364. https://doi.org/10.1093/nar/gkv1178
Further GPCR naming schemes
Ballesteros, J. A., & Weinstein, H. (1995). Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods in Neurosciences, 25(C), 366–428. https://doi.org/10.1016/S1043-9471(05)80049-7
Wu, H., Wang, C., Gregory, K. J., Han, G. W., Cho, H. P., Xia, Y., … Stevens, R. C. (2014). Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science, 344(6179), 58–64. https://doi.org/10.1126/science.1249489
Pin, J. P., Galvez, T., & Prézeau, L. (2003). Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacology and Therapeutics, 98(3), 325–354. https://doi.org/10.1016/S0163-7258(03)00038-X
Wootten, D., Simms, J., Miller, L. J., Christopoulos, A., & Sexton, P. M. (2013). Polar transmembrane interactions drive formation of ligand-specific and signal pathway-biased family B G protein-coupled receptor conformations. Proceedings of the National Academy of Sciences of the United States of America, 110(13), 5211–5216. https://doi.org/10.1073/pnas.1221585110
Oliveira, L., Paiva, A. C. M., & Vriend, G. (1993). A common motif in G-protein-coupled seven transmembrane helix receptors. Journal of Computer-Aided Molecular Design, 7(6), 649–658. https://doi.org/10.1007/BF00125323
Schwartz, T. W., Gether, U., Schambye, H. T., & Hjorth, S. A. (1995). Molecular mechanism of action of non-peptide ligands for peptide receptors. Current Pharmaceutical Design, 1, 325–342.
Schwartz, T. W. (1994). Locating ligand-binding sites in 7tm receptors by protein engineering. Current Opinion in Biotechnology, 5(4), 434–444. https://doi.org/10.1016/0958-1669(94)90054-X
Baldwin, J. M. (1993). The probable arrangement of the helices in G protein-coupled receptors. The EMBO Journal, 12(4), 1693–1703. https://doi.org/10.1002/J.1460-2075.1993.TB05814.X
Baldwin, J. M., Schertler, G. F. X., & Unger, V. M. (1997). An alpha-carbon template for the transmembrane helices in the rhodopsin family of G-protein-coupled receptors. Journal of Molecular Biology, 272(1), 144–164. https://doi.org/10.1006/jmbi.1997.1240
CGN naming scheme
Flock, T., Ravarani, C. N. J., Sun, D., Venkatakrishnan, A. J., Kayikci, M., Tate, C. G., … Babu, M. M. (2015). Universal allosteric mechanism for Gα activation by GPCRs. Nature 2015 524:7564, 524(7564), 173–179. https://doi.org/10.1038/nature14663
KLIFS 85 ligand binding site residues of kinases
Van Linden, O. P. J., Kooistra, A. J., Leurs, R., De Esch, I. J. P., & De Graaf, C. (2014). KLIFS: A knowledge-based structural database to navigate kinase-ligand interaction space. Journal of Medicinal Chemistry, 57(2), 249–277. https://doi.org/10.1021/JM400378W
Kooistra, A. J., Kanev, G. K., Van Linden, O. P. J., Leurs, R., De Esch, I. J. P., & De Graaf, C. (2016). KLIFS: a structural kinase-ligand interaction database. Nucleic Acids Research, 44(D1), D365–D371. https://doi.org/10.1093/NAR/GKV1082
Kanev, G. K., de Graaf, C., Westerman, B. A., de Esch, I. J. P., & Kooistra, A. J. (2021). KLIFS: an overhaul after the first 5 years of supporting kinase research. Nucleic Acids Research, 49(D1), D562–D569. https://doi.org/10.1093/NAR/GKAA895
PDB
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., … Bourne, P. E. (2000, January 1). The Protein Data Bank. Nucleic Acids Research. Oxford Academic. https://doi.org/10.1093/nar/28.1.235
UniProt
Bateman, A., Martin, M. J., Orchard, S., Magrane, M., Agivetova, R., Ahmad, S., … Zhang, J. (2021). UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Research, 49(D1), D480–D489. https://doi.org/10.1093/NAR/GKAA1100