Get and manipulate consensus nomenclature for GPCRs and G-proteins.

Uses local files and/or accesses the following databases:

Please see the individual documentation for further references and cite them whenever you use these nomenclature schemes in your final publication.



Guess what fragments in the topology best match the consensus labels in a LabelerConsensus object


Return an Trajectory by loading a local file or optionally looking up online, see md_load_rscb


Return a DataFrame containing generic GPCR-numbering.


Input a PDB code get an Trajectory object.


Print out references relevant to this module


LabelerGPCR(uniprot_name[, ref_PDB, …])

Obtain and manipulate GPCR notation.

LabelerCGN(PDB_input[, local_path, …])

Class to abstract, handle, and use common-Gprotein-nomenclature.


Quick access to the some of the references used by nomenclature


These are some of the references most relevant to this module:

  • GPCRdb and naming schemes therein

  • Kooistra, A. J., Mordalski, S., Pándy-Szekeres, G., Esguerra, M., Mamyrbekov, A., Munk, C., … Gloriam, D. E. (2021). GPCRdb in 2021: Integrating GPCR sequence, structure and function. Nucleic Acids Research, 49(D1), D335–D343.

  • Isberg, V., De Graaf, C., Bortolato, A., Cherezov, V., Katritch, V., Marshall, F. H., … Gloriam, D. E. (2015). Generic GPCR residue numbers - Aligning topology maps while minding the gaps. Trends in Pharmacological Sciences, 36(1), 22–31.

  • Isberg, V., Mordalski, S., Munk, C., Rataj, K., Harpsøe, K., Hauser, A. S., … Gloriam, D. E. (2016). GPCRdb: An information system for G protein-coupled receptors. Nucleic Acids Research, 44(D1), D356–D364.

  • Further GPCR naming schemes

  • Ballesteros, J. A., & Weinstein, H. (1995). Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods in Neurosciences, 25(C), 366–428.

  • Wu, H., Wang, C., Gregory, K. J., Han, G. W., Cho, H. P., Xia, Y., … Stevens, R. C. (2014). Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science, 344(6179), 58–64.

  • Pin, J. P., Galvez, T., & Prézeau, L. (2003). Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacology and Therapeutics, 98(3), 325–354.

  • Wootten, D., Simms, J., Miller, L. J., Christopoulos, A., & Sexton, P. M. (2013). Polar transmembrane interactions drive formation of ligand-specific and signal pathway-biased family B G protein-coupled receptor conformations. Proceedings of the National Academy of Sciences of the United States of America, 110(13), 5211–5216.

  • Oliveira, L., Paiva, A. C. M., & Vriend, G. (1993). A common motif in G-protein-coupled seven transmembrane helix receptors. Journal of Computer-Aided Molecular Design, 7(6), 649–658.

  • Schwartz, T. W., Gether, U., Schambye, H. T., & Hjorth, S. A. (1995). Molecular mechanism of action of non-peptide ligands for peptide receptors. Current Pharmaceutical Design, 1, 325–342.

  • Schwartz, T. W. (1994). Locating ligand-binding sites in 7tm receptors by protein engineering. Current Opinion in Biotechnology, 5(4), 434–444.

  • Baldwin, J. M. (1993). The probable arrangement of the helices in G protein-coupled receptors. The EMBO Journal, 12(4), 1693–1703.

  • Baldwin, J. M., Schertler, G. F. X., & Unger, V. M. (1997). An alpha-carbon template for the transmembrane helices in the rhodopsin family of G-protein-coupled receptors. Journal of Molecular Biology, 272(1), 144–164.

  • CGN naming scheme

  • Flock, T., Ravarani, C. N. J., Sun, D., Venkatakrishnan, A. J., Kayikci, M., Tate, C. G., … Babu, M. M. (2015). Universal allosteric mechanism for Gα activation by GPCRs. Nature 2015 524:7564, 524(7564), 173–179.

  • PDB

  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., … Bourne, P. E. (2000, January 1). The Protein Data Bank. Nucleic Acids Research. Oxford Academic.