protefffformatics

Machine Learning

Lecture:
https://renedominik.github.io/teaching/machine-learning/

Dr. René Staritzbichler

2021

https://renedominik.github.io/teaching/machine-learning/

poroteffpfformatics
Practical part

* Toy example: learning sinus

* Biological example: helix propensity for a sequence

protefdformatics
First example

* Create data: random pairs of x and sin(x)
- $ cd ann_sinus/

- Open create_data.py, x should range from -50 to 50
* Check which lines need to be commented out

- $./create_data.py > train_data.txt
 Train artificial neural network

- Open train_ann.py, hidden should be (5,8,5), 200 iterations
- $./train_ann.py

ANN(X)=¥peas ANN:R->R

poroteffpfformatics
First example

e Visualize outcome
- $ gnuplot

- > plot “test_predictions.txt” using 1:2 with points pt 6, “” us 1:3
with points pt 4

e Re-train artificial neural network

- Open train_ann.py, set hidden (55,85,55), 1000 |terat|ons
- $ time ./train_ann.py

protefdformatics
First example

* Visualize outcome as above
— Sinus should be described pretty well
* Test predictive power
- So far, our test was only using random values in the same range of x

- Predictions are interested in the “future”
» Stock markets
* Weather forecast
* MANY more...

* Open create_data.py, and plot 500 data points in the range of 50 to 70
- $./create_data.py > outside_test.txt

protefdformatics
First example

* Predict for the new values
- $./predict.py

* Visualize ‘old’ and ‘new’ data together
- $ gnuplot

- > plot “test_predictions.txt” us 1:2w p pt 4, " us 1:3w p pt 5,
“outside_predictions.txt”us 1:2wp pt4, “us L:.3wppts

 How would you judge the predictive power?

oroteffdformatics

First example

ol
mmmmm

Looks nice for training intervall ...

but it has absolutely no predictive value!!!

protefdformatics
Conclusions

The first setup has absolutely no predictive power

It learned the shape by heart, but no principle

One has to ask the right question

A main part of training learning algorithms is to find the right
perspective

The way data Is presented is crucial !

What would you change?

protefdformatics

Second approach

Before we used x as input and predicted y

ANN(x)=Y,eas ANN:R->R

We need to know the history to predict the future

Actually x does not matter that much

- Example: when predicting stocks (x is then time) you don’t
care primarily about when a certain trend appears

Next we use (Y, ..., ¥,) as input and predict y,.,

ANN(Y, s Y2)=Y et peas ANN:R™>R

protefdformatics

Second approach

* $cd../sinus_array

* Open create_data.py

— Starting from a similar random vector we will create arrays of
11 subsequent points

— 10 will serve as input and the last is used as reference to
compare to predicted values

- Note that we need much fewer data points (1000 instead of
100000)

* $./create_data.py

protefdformatics
Second approach

* Open train.py
- Note, that we can use a much smaller network
((10,15,10) instead of (55,85,55))
- Note, that we need much fewer iterations (100 instead of 1000)
- Reading of the data differs, otherwise the same training
- Evaluation is done systematically from -50 to 70

« $./train_ann.py
- Note the speed

* Visualize as before

poroteffpfformatics
Conclusions

* Clearly, this way of presenting the data has improved
- Training efficiency
- Accuracy
- Predictive power

protefdformatics

Biological example

Predicting helices from a protein sequence

Challenging task — LA has to ‘understand biochemistry’
Accuracy cannot be expected as high as in toy example
Already data collection is significantly more complex

Many ways of presenting data (‘ALA’: 0.34, ‘ASP’: -2.73, ..)
Real topic

orotefdformatics
Helix predictor

* Reference data: PDB
- PDB files contain both sequence as well as helix information

* Sequence to vector:
- translate amino acids to descriptors

e Train ANN:

— Input: descriptors
— QOutput: helix probability

poroteffpfformatics
Prediction procedure

convert_pisces.py
- Translate individual amino acids into features

create_db.py:

- Create data matrix X for sequence windows with helix probability as last value
train_ann.py

— Input data matrix X

— Output predictions y

NOTE: if you change anything in convert or create, you have to adjust ALL
subsequent steps !!!

protefdformatics

Helix predictor :: get data

$ cd ../helix_predictor/

Non-redundant list of proteins
- Pisces server: max 50% identity
- $less cullpdb_pc50 res3.0 R1.0 d200828 chains29260

Copy PDB files of Pisces list (use one of the following options):
- USB stick: $ cp -r /media/USER/Bigbelly/pdb.tgz .

— http://proteinformatics.uni-leipzig.de/document_server/
download ‘helix predictor data’

$ tar xzf pdb.tgz

http://proteinformatics.uni-leipzig.de/document_server/

poroteffpfformatics
Helix predictor :: translate data

Open ‘convert_pisces.py’
— Select pair of mode and output directory

Translate pdbs to profiles (features)
$./convert_pisces.py # calls pdb2dat.py

Open pdb2dat.py
- It extracts from each PDB both sequence and helix information
- Translates AA type to descriptors, different choices: C’(/c.
. N//
» sorted by hydrophobicity scale y
* grouping into hydrophobic (aromatic,others), polar, neg, pos, special cases

 profile: id, polar, pos/neg, aromatic, rest/gly/cys/his/pro , (kyte-doolittle)

Task: think of other simple ways of translating amino acids into descriptors

poroteffpfformatics
Helix predictor :: training data

$./create_db.py

- Predictions will be performed for sequence of fixed size
« Sliding window for longer sequences
* ANN: predict helix propensity for a given sequence window

- We have to collect a training database that contains
* n*l descriptor vector
(n number of descriptors per AA, | length of sequence window)

* Binary classifier: helix or not
- Related to center AA!!

14191186111913320110

protefdformatics

Helix predictor :: setup ANN

* Open train_ann.py
- Reads sequence descriptors into matrix X
- Reads reference classifications (helix/other) into vector y
- Splits both X and y into train and test subsets

— Calculates scaling by x_train, applies the same to x_test
(normalization!)

- Setup of ANN
* Architecture given as ‘hidden = (350)’
 |terations

protefdformatics
Helix predictor :: train and evaluate

e $./train_ann.py

* Understand the guality of the model: confusion matrix

Correct predictions: true positive, true negative
False predictions: false positive, false negative

TP TP

Actual class Sensitivity: P = TP+ FN
P N
S ificity: TN TN
S TP FP pecitcity: N TNLFP
class
FN TN TP+TN TP+ TN

Accuracy: P+N TP+TN+FP+FN

Sklearn outputs the confusion matrix with actual categories as rows, predicted as cols !!

protefdformatics

Things you could try

* Modify used data
- Use different scales, features in convert_pisces.py
- Window size, increment in create_db.py

* Adjust algorithm in train_ann.py
— Number and size of hidden layers
- lterations
- With without data scaling, regularization

* Aim is to improve prediction quality

The End

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

