protefffformatics

Machine Learning

Lecture:
https://renedominik.github.io/teaching/machine-learning/

Dr. René Staritzbichler

2021


https://renedominik.github.io/teaching/machine-learning/

poroteffpfformatics
Practical part

* Toy example: learning sinus

* Biological example: helix propensity for a sequence
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First example

* Create data: random pairs of x and sin(x)
- $ cd ann_sinus/

- Open create_data.py, x should range from -50 to 50
* Check which lines need to be commented out

- $ ./create_data.py > train_data.txt
 Train artificial neural network

- Open train_ann.py, hidden should be (5,8,5), 200 iterations
- $ ./train_ann.py

ANN(X)=¥peas ANN:R->R
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First example

e Visualize outcome
- $ gnuplot

- > plot “test_predictions.txt” using 1:2 with points pt 6, “” us 1:3
with points pt 4

e Re-train artificial neural network

- Open train_ann.py, set hidden (55,85,55), 1000 |terat|ons
- $ time ./train_ann.py
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First example

* Visualize outcome as above
— Sinus should be described pretty well
* Test predictive power
- So far, our test was only using random values in the same range of x

- Predictions are interested in the “future”
» Stock markets
* Weather forecast
* MANY more...

* Open create_data.py, and plot 500 data points in the range of 50 to 70
- $ ./create_data.py > outside_test.txt
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First example

* Predict for the new values
- $ ./predict.py

* Visualize ‘old’ and ‘new’ data together
- $ gnuplot

- > plot “test_predictions.txt” us 1:2w p pt 4, " us 1:3w p pt 5,
“outside_predictions.txt”us 1:2wp pt4, “us L:.3wppts

 How would you judge the predictive power?
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First example

ol
mmmmm

Looks nice for training intervall ...

but it has absolutely no predictive value!!!
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Conclusions

The first setup has absolutely no predictive power

It learned the shape by heart, but no principle

One has to ask the right question

A main part of training learning algorithms is to find the right
perspective

The way data Is presented is crucial !

What would you change?
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Second approach

Before we used x as input and predicted y

ANN(x)=Y,eas ANN:R->R

We need to know the history to predict the future

Actually x does not matter that much

- Example: when predicting stocks (x is then time) you don’t
care primarily about when a certain trend appears

Next we use (Y, ..., ¥,) as input and predict y,.,

ANN(Y, s Y2)=Y et peas  ANN:R™>R
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Second approach

* $cd../sinus_array

* Open create_data.py

— Starting from a similar random vector we will create arrays of
11 subsequent points

— 10 will serve as input and the last is used as reference to
compare to predicted values

- Note that we need much fewer data points (1000 instead of
100000)

* $ ./create_data.py
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Second approach

* Open train.py
- Note, that we can use a much smaller network
((10,15,10) instead of (55,85,55))
- Note, that we need much fewer iterations (100 instead of 1000)
- Reading of the data differs, otherwise the same training
- Evaluation is done systematically from -50 to 70

« $ ./train_ann.py
- Note the speed

* Visualize as before
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Conclusions

* Clearly, this way of presenting the data has improved
- Training efficiency
- Accuracy
- Predictive power
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Biological example

Predicting helices from a protein sequence

Challenging task — LA has to ‘understand biochemistry’
Accuracy cannot be expected as high as in toy example
Already data collection is significantly more complex

Many ways of presenting data (‘ALA’: 0.34, ‘ASP’: -2.73, ..)
Real topic



orotefdformatics
Helix predictor

* Reference data: PDB
- PDB files contain both sequence as well as helix information

* Sequence to vector:
- translate amino acids to descriptors

e Train ANN:

— Input: descriptors
— QOutput: helix probability
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Prediction procedure

convert_pisces.py
- Translate individual amino acids into features

create_db.py:

- Create data matrix X for sequence windows with helix probability as last value
train_ann.py

— Input data matrix X

— Output predictions y

NOTE: if you change anything in convert or create, you have to adjust ALL
subsequent steps !!!
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Helix predictor :: get data

$ cd ../helix_predictor/

Non-redundant list of proteins
- Pisces server: max 50% identity
- $less cullpdb_pc50 res3.0 R1.0 d200828 chains29260

Copy PDB files of Pisces list (use one of the following options):
- USB stick: $ cp -r /media/USER/Bigbelly/pdb.tgz .

— http://proteinformatics.uni-leipzig.de/document_server/
download ‘helix predictor data’

$ tar xzf pdb.tgz


http://proteinformatics.uni-leipzig.de/document_server/
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Helix predictor :: translate data

Open ‘convert_pisces.py’
— Select pair of mode and output directory

Translate pdbs to profiles (features)
$ ./convert_pisces.py # calls pdb2dat.py

Open pdb2dat.py
- It extracts from each PDB both sequence and helix information
- Translates AA type to descriptors, different choices: C’(/c.
. N//
» sorted by hydrophobicity scale y
* grouping into hydrophobic (aromatic,others), polar, neg, pos, special cases

 profile: id, polar, pos/neg, aromatic, rest/gly/cys/his/pro , (kyte-doolittle)

Task: think of other simple ways of translating amino acids into descriptors
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Helix predictor :: training data

$ ./create_db.py

- Predictions will be performed for sequence of fixed size
« Sliding window for longer sequences
* ANN: predict helix propensity for a given sequence window

- We have to collect a training database that contains
* n*l descriptor vector
(n number of descriptors per AA, | length of sequence window)

* Binary classifier: helix or not
- Related to center AA!!

14191186111913320110
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Helix predictor :: setup ANN

* Open train_ann.py
- Reads sequence descriptors into matrix X
- Reads reference classifications (helix/other) into vector y
- Splits both X and y into train and test subsets

— Calculates scaling by x_train, applies the same to x_test
(normalization!)

- Setup of ANN
* Architecture given as ‘hidden = (350)’
 |terations
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Helix predictor :: train and evaluate

e $ ./train_ann.py

* Understand the guality of the model: confusion matrix

Correct predictions: true positive, true negative
False predictions: false positive, false negative

TP TP

Actual class Sensitivity: P = TP+ FN
P N
S ificity: TN TN
S TP FP pecitcity: N  TNLFP
class
FN TN TP+TN TP+ TN

Accuracy: P+N  TP+TN+FP+FN

Sklearn outputs the confusion matrix with actual categories as rows, predicted as cols !!
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Things you could try

* Modify used data
- Use different scales, features in convert_pisces.py
- Window size, increment in create_db.py

* Adjust algorithm in train_ann.py
— Number and size of hidden layers
- lterations
- With without data scaling, regularization

* Aim is to improve prediction quality



The End
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