

Machine Learning

Lecture:
https://renedominik.github.io/teaching/machine-learning/

Dr. René Staritzbichler

2021

https://renedominik.github.io/teaching/machine-learning/

Practical part

● Toy example: learning sinus

● Biological example: helix propensity for a sequence

First example

ANN (x)= y pred , ANN :ℝ→ℝ

● Create data: random pairs of x and sin(x)
– $ cd ann_sinus/

– Open create_data.py, x should range from -50 to 50
● Check which lines need to be commented out

– $./create_data.py > train_data.txt

● Train artificial neural network
– Open train_ann.py, hidden should be (5,8,5), 200 iterations
– $./train_ann.py

First example

● Visualize outcome
– $ gnuplot

– > plot “test_predictions.txt” using 1:2 with points pt 6, “” us 1:3
with points pt 4

● Re-train artificial neural network
– Open train_ann.py, set hidden (55,85,55), 1000 iterations
– $ time ./train_ann.py

First example

● Visualize outcome as above
– Sinus should be described pretty well

● Test predictive power
– So far, our test was only using random values in the same range of x
– Predictions are interested in the “future”

● Stock markets
● Weather forecast
● MANY more...

● Open create_data.py, and plot 500 data points in the range of 50 to 70
– $./create_data.py > outside_test.txt

First example

● Predict for the new values
– $./predict.py

● Visualize ‘old’ and ‘new’ data together
– $ gnuplot
– > plot “test_predictions.txt” us 1:2 w p pt 4, “” us 1:3 w p pt 5,

“outside_predictions.txt” us 1:2 w p pt 4, “” us 1:3 w p pt 5

● How would you judge the predictive power?

First example

Looks nice for training intervall …

but it has absolutely no predictive value!!!

Conclusions

● The first setup has absolutely no predictive power

● It learned the shape by heart, but no principle

● One has to ask the right question

● A main part of training learning algorithms is to find the right
perspective

● The way data is presented is crucial !

● What would you change?

Second approach

● Before we used x as input and predicted y

● We need to know the history to predict the future

● Actually x does not matter that much

– Example: when predicting stocks (x is then time) you don’t
care primarily about when a certain trend appears

● Next we use (y1, …, yn) as input and predict yn+1

ANN (x)= y pred , ANN :ℝ→ℝ

ANN (y1 ,... , yn)= y n+1 , pred , ANN :ℝn→ℝ

Second approach

● $ cd ../sinus_array

● Open create_data.py
– Starting from a similar random vector we will create arrays of

11 subsequent points
– 10 will serve as input and the last is used as reference to

compare to predicted values
– Note that we need much fewer data points (1000 instead of

100000)

● $./create_data.py

Second approach

● Open train.py
– Note, that we can use a much smaller network

((10,15,10) instead of (55,85,55))
– Note, that we need much fewer iterations (100 instead of 1000)
– Reading of the data differs, otherwise the same training
– Evaluation is done systematically from -50 to 70

● $./train_ann.py
– Note the speed

● Visualize as before

Conclusions

● Clearly, this way of presenting the data has improved
– Training efficiency
– Accuracy
– Predictive power

Biological example

● Predicting helices from a protein sequence

● Challenging task – LA has to ‘understand biochemistry’

● Accuracy cannot be expected as high as in toy example

● Already data collection is significantly more complex

● Many ways of presenting data (‘ALA’: 0.34, ‘ASP’: -2.73, ..)

● Real topic

Helix predictor

● Reference data: PDB

– PDB files contain both sequence as well as helix information

● Sequence to vector:

– translate amino acids to descriptors

● Train ANN:

– Input: descriptors

– Output: helix probability

Prediction procedure

● convert_pisces.py

– Translate individual amino acids into features

● create_db.py:

– Create data matrix X for sequence windows with helix probability as last value

● train_ann.py

– Input data matrix X

– Output predictions y

NOTE: if you change anything in convert or create, you have to adjust ALL
subsequent steps !!!

Helix predictor :: get data

● $ cd ../helix_predictor/

● Non-redundant list of proteins

– Pisces server: max 50% identity

– $ less cullpdb_pc50_res3.0_R1.0_d200828_chains29260

● Copy PDB files of Pisces list (use one of the following options):

– USB stick: $ cp -r /media/USER/Bigbelly/pdb.tgz .

– http://proteinformatics.uni-leipzig.de/document_server/
download ‘helix predictor data’

● $ tar xzf pdb.tgz

http://proteinformatics.uni-leipzig.de/document_server/

Helix predictor :: translate data

● Open ‘convert_pisces.py’

– Select pair of mode and output directory

● Translate pdbs to profiles (features)

$./convert_pisces.py # calls pdb2dat.py

● Open pdb2dat.py

– It extracts from each PDB both sequence and helix information

– Translates AA type to descriptors, different choices:
● sorted by hydrophobicity scale
● grouping into hydrophobic (aromatic,others), polar, neg, pos, special cases
● profile: id, polar, pos/neg, aromatic, rest/gly/cys/his/pro , (kyte-doolittle)

● Task: think of other simple ways of translating amino acids into descriptors

crucial!

Helix predictor :: training data

$./create_db.py

– Predictions will be performed for sequence of fixed size
● Sliding window for longer sequences
● ANN: predict helix propensity for a given sequence window

– We have to collect a training database that contains
● n*l descriptor vector

(n number of descriptors per AA, l length of sequence window)
● Binary classifier: helix or not

– Related to center AA!!

14 19 1 18 6 11 19 13 3 20 11 0

Helix predictor :: setup ANN

● Open train_ann.py

– Reads sequence descriptors into matrix X

– Reads reference classifications (helix/other) into vector y

– Splits both X and y into train and test subsets

– Calculates scaling by x_train, applies the same to x_test
(normalization!)

– Setup of ANN
● Architecture given as ‘hidden = (350)’
● Iterations

Helix predictor :: train and evaluate

● $./train_ann.py

● Understand the quality of the model: confusion matrix

Correct predictions: true positive, true negative

False predictions: false positive, false negative

Sensitivity:

Specificity:

Accuracy:

Sklearn outputs the confusion matrix with actual categories as rows, predicted as cols !!

Things you could try

● Modify used data

– Use different scales, features in convert_pisces.py

– Window size, increment in create_db.py

● Adjust algorithm in train_ann.py

– Number and size of hidden layers

– Iterations

– With without data scaling, regularization

● Aim is to improve prediction quality

The End

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

