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Abstract

Motivation: Protein-protein interactions play an essential role in a great variety of cellular processes
and are therefore of significant interest for the design of new therapeutic compounds as well as the
identification of side-effects due to unexpected binding. Here, we present ProteinPrompt, a webserver that
uses machine-learning algorithms to calculate specific, currently unknown protein-protein interactions. Our
tool is designed to quickly and reliably predict contacts based on an input sequence in order to scan large
sequence libraries for potential binding partners, with the goal to accelerate and assure the quality of the
laborious process of drug target identification.
Methods: We collected and thoroughly filtered a comprehensive database of known contacts from
several sources, which is available as download. ProteinPrompt provides two complementary search
methods of similar accuracy for comparison and consensus building. The default method is a random
forest algorithm that uses the auto-correlations of seven amino acid scales. Alternatively, a graph neural
network implementation can be selected. Additionally, a consensus prediction is available. For each query
sequence, potential binding partners are identified from a protein sequence database. The proteom of
several organisms are available and can be searched for contacts.
Results: To evaluate the predictive power of the algorithms, we prepared a test dataset that was rigorously
filtered for redundancy. No sequence pairs similar to the ones used for training were included in this dataset.
With this challenging dataset, the random forest method achieved an accuracy rate of 0.88 and an area
under curve of 0.95. The graph neural network achieved an accuracy rate of 0.86 using the same dataset.
Since the underlying learning approaches are unrelated, comparing the results of random forest and graph
neural networks reduces the likelihood of errors. The consensus reached an accuracy of XX. ProteinPrompt
is available online at:
http://proteinformatics.org/ProteinPrompt

The server makes it possible to scan the human proteome for potential binding partners of an input
sequence within minutes. In conclusion, we offer a fast, accurate, easy-to-use online service for predicting
binding partners from an input sequence.
Contact: rene.staritzbichler@medizin.uni-leipzig.de
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1 Introduction
Protein interactions are key to the complex molecular interplays of
cellular processes. The driving forces of these molecular networks are
protein interactions rather than the individual functions of single protein
components (Pawson, 2004). Biological processes, such as cellular
organization, communication, immune responses, and the regulation of
transcription and translation, function appropriately only when various
proteins interact and work together properly.

Laboratory identification and validation of protein interactions often
relies on expensive, time-consuming biochemical and biophysical
assays, including ELISA, western blot, immunoprecipitation, Förster
resonance energy transfer (FRET) or cross-linking approaches, florescence
anisotropy, microscale thermophoresis (MST), surface plasmon resonance
spectroscopy (SRP), high-throughput screening methods (e.g., phage
display), or combinations thereof.

A reliable in silico method for predicting protein-protein interactions
(PPI) would therefore shed more light on the details of biological pathways
and pharmacological responses. Computations may complement and guide
biochemical assays. However, explicit molecular dynamics or docking
approaches require structural detail, which is often unavailable. Even if
the structure of a protein is known, these methods are computationally
expensive and therefore impractical for scanning huge libraries of
candidates.

Therefore, when structural insight is lacking or when speed is crucial,
other methods are needed. Non-structure-based computational approaches
for identifying potential PPIs generally use an extensive dataset of known
protein-protein interactions, combined with information about cellular
localization, amino acid sequences, or secondary structures.

These methods may include phylogenetic trees (Pazos and Valencia,
2001), phylogenetic profiles (Barker and Pagel, 2005; Hamp and Rost,
2015a), graph based approaches (Yang et al., 2020), support vector
machines (Li et al., 2019), or network-based approaches (Yook et al.,
2004; Clauset et al., 2008), stacked autoencoders (Sun et al., 2017),
as well as (recurrent) convolutional neural networks (Hashemifar et al.,
2018; Chen et al., 2019). In recent years, distinct prediction methods have
been combined, e.g. convolutional neural networks and feature-selecting
rotation forests (Wang et al., 2019). Algorithms from language encoding
(Yao et al., 2019) and principle component analysis (Kong et al., 2020)
were used to derive feature vectors. Structural features were exploited:
(Singh et al., 2010; Das and Chakrabarti, 2021). Overall, the field of
biology has recently seen a massive increase in applications using deep
learning (Ching et al., 2018).

Nevertheless, different proteome-wide prediction methods have
demonstrated that knowledge of the amino acid sequence alone may be
sufficient to identify novel, functional protein-protein interactions (Martin
et al., 2005; Shen et al., 2007). These methods usually rely on statistical
learning algorithms. Due to its significant advantages, which include
simplicity, rapidity, and generality, this method of prediction has become
more and more common in recent years (Ofran and Rost, 2003; Betel et al.,
2007; Liu et al., 2012; Perovic et al., 2017; Pan et al., 2010; Chen et al.,
2020; Das and Chakrabarti, 2021).

Precalculated databases are availabe online: PrePPI (Zhang et al.,
2013), ProfPPI (Tran et al., 2018), STRING (Szklarczyk et al., 2011),
or PIPS (McDowall et al., 2009). Several webservices offer a limited
number of pairwise predictions: PSOPIA (Murakami and Mizuguchi,
2014), iLoops (Planas-Iglesias et al., 2013), iFrag (Garcia-Garcia
et al., 2017). To our knowledge, no webserver currently offers scanning
entire proteoms.

In this paper, we present an online sequence-based approach to
predicting PPIs. The tool’s predictive power was boosted through rigorous
fine-tuning of the key elements of machine learning, including dataset

generation and feature vector design. Auto-correlation of hydrophobicities
combined with a random forest (RF) machine-learning algorithm led to
maximum accuracy. The quality and speed of this system make it a suitable
high-throughput method for scanning sequence libraries. Furthermore, we
achieved a comparable accuracy rate using a graph neural network (GNN).
Since this approach has a completely different mathematical structure, we
provide it as an option for the user on the server. Additionally, a consensus
method is available.

Therefore, ProteinPrompt (protein prediction of matching partners)
may serve as a reliable tool for identifying potential interaction partners
from an entire proteom. It can thus be used to help identify the yet-unknown
biological roles of many proteins and may contribute to identifying new
therapeutic targets.

2 Materials and Methods
To maximize the system’s predictive power, it is pivotal to optimize all
key elements, including the collection of training and testing data, the
calculation of feature vectors, and the selection and fine-tuning of the
machine-learning algorithm. Many varied approaches to all these steps
were tested. Here, we focus on the approaches that resulted in the highest
accuracy rates.

2.1 Collecting data points

In order to create comprehensive training and testing data, we tried
to collect as many trustworthy PPI annotations as possible. We
included data from various sources, such as the Database of Human

Interacting Proteins1 (DIP) (Salwinski et al., 2004), the Human
Protein Reference Database2 (HPRD) (Keshava Prasad et al.,
2009), the Protein Database3 (PDB) (Berman et al., 2000), and
the Negatome Database4 (Blohm et al., 2014). We also included
annotations retrieved from the KUPS5 server (Chen et al., 2011), which
mainly incorporates PPIs from MINT6 (Licata et al., 2012) and IntAct7

(Orchard et al., 2014). In addition to the negative annotations collected
from the Negatome Database, the KUPS server generates negative
data points based on the the following criteria: (1) the proteins are
functionally dissimilar, (2) the proteins are located in different cellular
compartments, and (3) the proteins are part of non-interacting domains.

After intense manual curation and after mapping the different names
used to describe the same proteins, we derived a total list of 31,867 distinct
human proteins. For this set, 73,681 positive PPIs were collected from the
databases mentioned above. We then used CD-hit (Li and Godzik, 2006;
Fu et al., 2012) to reduce this set to 41,844 positive protein-protein pairs
with at most 50% sequence identity. For the negative pairs, we collected
over 1.5 million unique protein-protein pairs, from which we randomly
selected a number of PPIs equal to the size of the positive dataset.

We separated the data into test and training data to estimate the quality
of the optimized prediction model with an independent dataset, which was
not involved in the training or similar to the data used for training. Our
final training dataset contained 36,750 positive and 36,750 negative PPIs,
while our testing dataset contained 5094 positive and 5094 negative data
points.

1 http://dip.doe-mbi.ucla.edu/
2 http://www.hprd.org/
3 www.rcsb.org
4 http://mips.helmholtz-muenchen.de/proj/ppi/negatome/
5 http://www.ittc.ku.edu/chenlab/kups/
6 https://mint.bio.uniroma2.it/
7 https://www.ebi.ac.uk/intact/

2 The Author 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
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To assess the prediction quality of ProteinPrompt, we compared our
system to several other publicly available programs. As some of them have
limited speed or upload capacity, it was not feasible to perform this test
using our entire test dataset, which includes more than 10k data points.
Instead, we randomly selected 470 positive and 470 negative pairs from
our test set.

2.2 Analysis of data sets

In machine learning, data are often considered equal. Under this
assumption, data can be divided into training and test data using random
selection. This is clearly not the case for protein sequences, as the level of
similarity among sequences may vary dramatically. (A comparison may
be drawn from face recognition: Protein sequences can differ from one
another as much as human faces differ from those of cats or whales.) Park
et al. (Park and Marcotte, 2012) point out several combinatorial issues,
which were further explored by Hamp et al (Hamp and Rost, 2015b). These
issues are due to the pairwise nature of the input and should be considered
when building the test dataset. It should be noted that our input data are
sequence pairs that are identical in nature and therefore symmetric. This
section addresses the relation between data points and their separation into
test and training sets.

Obviously, it is significantly easier to predict binding partners for a
query sequence that is very similar to one of the sequences in the training
dataset than to predict binding partners for a sequence that has no similarity
to any sequence in the training set. The latter case requires the algorithm
to have "understood" some of principles that control the binding, while
the former case only requires it to interpolate from known cases. The
more predictions are based on actual understanding, the more general the
results will be. However, it is very difficult to understand the complex, 3D
interactions of macromolecules based on patterns in their sequences. A full
understanding of these interactions requires some level of understanding of
the folding of the individual proteins as well as their preferences regarding
relative orientation.

Our goal was to train a method that was as general as possible, in
the sense that it should not specialize in a certain class of human protein
sequences. This meant that we needed to minimize redundancies in the
datasets. Furthermore, we intended to perform a very rigorous test by
reducing similarities between the training and testing data. As pointed out
by Park et al., this approach may not lead to the best overall performance.
However, it is the most rigorous way to test such a system.

Therefore, we analyzed the redundancies in our datasets by comparing
similarities among data points. It should be noted that we were not looking
for pairwise sequence similarity but the similarity of any given pair of
sequences with any other pair of sequences. All datasets contain sequence
pairs that are known to be binders or non-binders. First, we collected
BLAST alignments for all the sequences in all datasets. We calculated
similarity by dividing the number of identical positions by the length of
the sequence. To compare the similarity of a pair A: (A1,A2) with pair
B: (B1, B2) similarities were calculated in two possible combinations:
Sim(A1, B1) with Sim(A2, B2) and Sim(A1, B2) with Sim(A2, B1).
The combination resulting in a higher total similarity was selected. The
2D histogram in Figure 1 illustrates the low similarity between the binders
in the training and test datasets. Thus, the selected test set represents a
difficult challenge for the algorithm, and the accuracy rates reported here
can be considered a worst-case estimate.

Equivalent analyses with very similar results were performed on both
datasets separately; the results are provided in the supplementary material
(Figures S1, S2, S3). The values that are illustrated in the Figures are
provided in Tables S1, S2, S3.

Pairwise sequence similarity
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Fig. 1. Redundancy analysis of binders in the training and test datasets. Depicted is a 2D
histogram of similarity between sequence pairs known to be binders in the training and
test datasets. The yellow area represents sequence pairs with no or very few similarities
(below∼ 30%). It has a count of 1.8 ·108 . The violet area represents significantly smaller
number of occurrences. A detailed description of this analysis is provided in section 2.2.
The values of the histogram can be found in Table S1. Note that this figure is identical to
the left image in Figure S1.

Fig. 2. Overview of the training procedure.

2.3 Selection of learning method

Many machine-learning algorithms are available. We used the caret R
package (Kuhn, 2008) for fine-tuning and comparison. We tested several
artificial neural network implementations, support vector machines, and
tree-based methods. After determining that the RF approach performed
best on our extensive testing and training datasets, we moved to a Python-
based implementation to improve performance. A significant advantage of
RFs is that overfitting is not a major problem.

We also extensively tested several more recent machine-learning
methods, such as convolutional neural networks (CNN) and graph neural
networks (GNN), which were implemented using the Tensorflow and
PyTorch frameworks, respectively. CNNs were dismissed because of
significant problems with overfitting. However, the GNN method resulted
in comparable prediction quality to that achieved by the RF. Furthermore,
the GNN method does not require any external preprocessing and can
handle input data of varied sizes and structures. In our implementation,
the GNN translates the data into fixed sized feature vectors, followed by a
multilayer perceptron (MLP) that is predicting the binding. Feature vector
calculation and predictions are trained in a single optimization scheme.
Therefore, the GNN based implementation was trained on the raw data
profiles.
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2.4 Random forest classification

RF is a supervised learning algorithm that uses an ensemble of
classification trees (Breiman, 2001). Each classification tree is built
through bootstrap aggregation (bagging), a method of random sampling
with replacement. From the original dataset, which contains n feature
vectors, a random feature vector is selected n times and then copied to
the dataset used to construct the tree. The copied feature vector is not
removed from the original dataset. Thus, there will be multiple copies of
some feature vectors. This means that different feature vectors are assigned
varying degrees of importance. We defined a 420-dimension feature vector
F = (x1, x2, . . . , x420) as the input for the RF model.

To construct an individual tree, a small random subset of a fixed size
m � 420 is extracted from the feature vectors at each node. The best
split between these m values, which is the split that leads to the highest
predictive power, is selected as the condition at each node. Each tree is
grown as large as possible without pruning, resulting in low-bias trees.
While this results in overfitting for a single decision tree, RF uses a high
number of decision trees, which means that the algorithm has low variance.
The final number of trees in the forest was set to 750 to optimize run time.

To further enhance the prediction quality of the RF, we also
incorporated inverse and reverse PPI representations. Each protein-protein
pairAB is described in the original and inverse direction (A: “ABC”→A′:
“CBA”), as well as in the original and reversed order (AB,BA). In the final
dataset each annotated PPI is represented in four distinct descriptions. For
example, some pseudo-sequences are: (“ABCD”, “KLMN”), (“ABCD”,
“NMLK”), (“KLMN”, “ABCD”), (“KLMN”, “DCBA”). This quadrupling
of the data was not necessary for the GNN implementation.

2.4.1 Feature vector calculation
Feature vector calculation includes extracting and transforming sequence-
based information into a numerical vector of a constant size. Therefore,
it is essential to extract the properties that direct the protein-protein
interactions.

Each amino acid sequence of a protein-protein complex was
transformed into a sequence of numerical values representing seven
sequence-derived physicochemical properties. These properties are
hydrophobicity (Eisenberg et al., 1984; Koehler et al., 2009),
hydropyhilicity (Hopp and Woods, 1981), the volume of the side chains of
amino acids (Krigbaum and Komoriya, 1979), polarity (Grantham, 1974),
polarizability (Charton and Charton, 1982), solvent-accessible surface
area (Rose et al., 1985), and the net charge index of the side chains
of amino acids (Zhou et al., 2006) The properties were calculated for
each residue in the sequence. These scales are commonly used for protein
recognition (Ding and Dubchak, 2001) and to predict protein interactions
(Bock and Gough, 2001, 2003), protein alignment (Stamm et al., 2013),
protein structure (Durham et al., 2009), or protein functional families (Cai
et al., 2003). These applications suggest that these properties significantly
contribute to the stability of protein-protein complexes. Each amino acid
scale was normalized as follows:

P ′i = (Pi − P )/σP (1)

where P is the mean and σ is the standard deviation of the scale-based
descriptor covering 20 amino acids, respectively:

P =

20∑
i=1

Pi/20 (2)

and

σP =

√√√√ 1

20

20∑
i=1

(Pi − P )2 (3)

Auto-correlation (AC) was then used to transform the data into
appropriate feature vectors as follows:

AClag,j =

1
n−lag

∑n−lag
i=1 (Si,j − Sj)(Si+lag,j − Sj)

σSj
∗ σSj

(4)

whereSj is the translated amino acid sequence using the normalized scale-
based descriptor P ′j with j = 1, 2, . . . , 7 , n is the length of sequence S,
lag = 1, 2, . . . , 30 is the shift for which the auto-correlation is calculated,
Sj andσSj

are the mean and standard deviation of the translated sequence,
respectively. Ding et al. (2016) showed that a maximum lag of less than
30 tends to lose useful information, while larger values may induce noise.
Accordingly, the number of AC values for each of the seven scales is
30. The feature vector describing any individual amino acid sequence has
7 · 30 = 210 elements or dimensions. Thus, for a pair of sequences, the
feature space has 420 dimensions.

2.5 Graph neural networks

Graph neural networks (GNN) are a relatively new type of neural networks
that operate on graphs (Scarselli et al., 2009), (Battaglia et al., 2018).
Features can be assigned and predicted on a node, edge, or graph level.
The algorithm takes a graph as input, performs computations on the graph
itself through a process called message passing, and returns a graph of
identical structure but updated features.

In a message passing round, first, the edge features are updated by
a learnable update function that takes connected nodes and current edge
features into account. Afterwards, another learnable function calculates
new node features based on the aggregation of all connected edges and
current node features. In the final step, a graph-level target is constructed
by a third learnable function that takes an aggregation of all the nodes
and edges as input. Through this process, every node and edge collects
information about its local region in the graph; these data are used to infer
global features.

We used GNNs to condense the information in protein sequences of
varying lengths to a fixed-sized vector representation of each sequence.
One graph is constructed for each sequence; nodes represent amino acids,
and edges are constructed between the nodes of adjacent amino acids.
The node features were encoded using a MLP that transformed the values
of the amino acid profiles into a 32-dimension vector. The edge features
were encoded from a vector of same size that was initialized with ones.
The update functions for the nodes and edges and for the graph were
implemented by MLPs.

After five rounds of message passing, a final aggregation function is
performed on the graph to calculate a 128-dimension graph-level feature
from all nodes and edges. This output can be understood as an abstract
representation of each protein. This is done for both sequences. Then,
their feature vectors are concatenated to one 256-dimension vector, which
is then used as the input for the MLP. The last network returns the prediction
of the binding propensity of the two proteins.

The model was built using PyTorch and the PyTorch geometric library.
The message passing graph net block was realized using its MetaLayer
class with an additional edge update on the graph. Parameters were
initialized as described by (Glorot and Bengio, 2010), and a leaky rectified
linear unit (ReLU) (Maas et al., 2013) was used for activations, except
in the final layer of the last MLP, where a sigmoid activation was used.
Training was done using binary cross-entropy loss and the AdamW
(Loshchilov and Hutter, 2017) optimizer with a learning rate of 1e-5 for
350 epochs. The iteration with the best performance on the test set was
refined over an additional 50 epochs with a learning rate of 1e-7. See
Figure S4 in the supplementary materials for a graphical illustration of our
implementation.
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Fig. 3. Performance of ProteinPrompt on the entire test dataset of over 10,000 PPIs.

2.6 Consensus of RF and GNN

We trained a simple neural network with the outputs of RF and GNN for
performing a consensus prediction. The scores returned by RF and GNN
show rather different distributions. Thus, a linear combination is unlikely
to result in the best possible consensus. We selected a NN with two inputs,
2 hidden layers with 8 neurons and single output neuron.

3 Results

3.1 Performance RF

Based on our test dataset of 5094 positive and 5094 negative cases (binders
vs. non-binders), we plotted the receiver operation characteristics (ROC)
curve, shown in Figure 3. This allowed us to estimate the overall quality
of the predictions and also provides a visual overview of the relationship
between true and false positives. Each point on the curve shows how many
falsely predicted binders should be expected for a given number of correctly
predicted ones. As the datapoints are sorted by their predicted binding
propensity, a reasonable threshold can be selected. This allows to fine-tune
the balance between sensitivity and specificity.

Sensitivity is the ratio of correctly predicted binders (true positives) to
actual binders. Specificity is the ratio of correctly predicted non-binders
(true negatives) to all non-binders. For example, in Figure 3, a false positive
rate of 0.03 will result in a true positive rate of ∼0.6. Thus, selecting this
point (its associated score) as the threshold will result in a hit rate of 60%
and only 3% false predictions should be expected.

An ideal signal would lead to a rectangular plot with an area under
the curve (AUC) of 1. The other extreme, pure noise, would result in
a diagonal line with an AUC of 0.5. Our method results in an AUC
of 0.95, specificity of 0.88, sensitivity of 0.87, and an accuracy rate of
0.88. Currently, our method balances specificity and sensitivity to avoid
unwanted bias in different applications.

3.1.1 RF compared to other tools
We compared our optimized RF system to publicly available tools such as
SPPS (Liu et al., 2012), TRI_tool (Perovic et al., 2017), and LR_PPI
(Pan et al., 2010). Due to limited access, we used the reduced test dataset,
as described in the methods section. We also re-evaluated ProteinPrompt
on the reduced test dataset to ensure comparable results. The results of

Fig. 4. ROC curves for ProteinPrompt, SPPS, TRI_tool, LR_PPI using the reduced
test dataset of 968 protein-protein pairs.

Tool AUC Spec. Sens. Acc.
ProteinPrompt 0.94 0.88 0.84 0.86
SPPS 0.77 0.34 0.96 0.66
TRI_tool 0.73 0.95 0.32 0.63
LR_PPI 0.60 0.16 0.91 0.53

Table 1. Quality measures of ProteinPromptcompared to other publicly
available tools, such as SPPS (Liu et al., 2012), TRI_tool (Perovic et al.,
2017), and LR_PPI (Pan et al., 2010). AUC, specificity, sensitivity, and
accuracy are listed.

our evaluation using the reduced test dataset are somewhat different from
those we obtained using the entire test dataset.

The results shown in Table 1 and the ROC plot in Figure 4 suggest
that ProteinPrompt outperforms the other three methods. Furthermore,
ProteinPrompt balances sensitivity and specificity. SPPS and LR_PPI

have excellent sensitivity of 0.96 and 0.91; however, their specificity is
rather poor: 0.34 and 0.16, respectively. TRI_tool on the other hand,
shows a massive bias towards specificity, which is 0.95, compared to
a sensitivity of 0.32 . Furthermore, the overall prediction accuracy and
the AUC of our tool are significantly higher. Accuracy: 0.86 versus 0.66
(SPPS), 0.63 (TRI_tool) or 0.53 (LR_PPI). AUC: 0.94 versus 0.77
(SPPS), 0.73 (TRI_tool), and 0.60 (LR_PPI), respectively.

3.1.2 Individual test cases
We further tested the detection rate of ProteinPrompt using experimentally
verified protein interaction partners (EV PPIs). We compared the output
of ProteinPrompt to that of the STRING database8, which has been shown
to include a very high number of experimentally proven PPIs (Bajpai
et al., 2020). Here, the EV PPIs of five different prominent proteins
with various cellular functions (Table S4 in the supplementary material)
with high confidence (score > 0.7) were investigated. The PPI predictions
of ProteinPrompt were compared to those of the STRING database.
ProteinPrompt found all but one of the EV PPIs output by the STRING
Database; for the SRC gene one of nine binding partners was not identified
(Table S4). The scores given by the STRING database and the scores of
ProteinPrompt were then statistically analyzed and plotted as boxplots to
enable direct comparison (Figure 5). On average, ProteinPrompt predicted

8 https://string-db.org
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Fig. 5. EV PPI scores from ProteinPrompt (green) and from STRING database (grey) for
a test set of five different proteins, indicated by their gene names in the boxplot.

all identified EV PPIs with comparable or better accuracy than the STRING
database (Figure 5, Table S4). However, due to the complexity of PPIs
in nature, STRING scores do not necessarily reflect real protein-protein
affinities. On our test dataset, ProteinPrompt was able to rapidly predict
EV PPIs with an average accuracy rate of 0.89 and a SD of 0.09. From
a user’s perspective, ProteinPrompt identified 98% of all EV PPIs with
a predicted score above 0.7, 84% of all EV PPIs with a predicted score
above 0.8, and 46% of all EV PPIs with a predicted score above 0.9.

3.1.3 Dataset of Park and Marcotte
Using the dataset from Park and Marcotte (2012), we were able to identify
our dataset as the main factor why our method achieves quite high accuracy.
A detailed description can be found in the Supplementary Materials.

3.2 Performance GNN

In the first test, we used the same seven amino acid scales that were used
for the RF. We compared this to a graph topology in which 13 and 15 scales
were assigned to each amino acid. The resulting accuracy rates are listed
in Table 2.

# profiles Accuracy
7 83.5%

13 86.0%
15 83.8%

Table 2. Accuracies of GNNs trained on different numbers of amino acid
profiles.

Adding as many residue scales as possible to the graph does not
improve the accuracy. Currently, the maximum accuracy is 86% for 13
residue scales. Extensive future research would be needed to further
maximize the performance of the GNN.

In cross validations, in which 20% of the training data were used as
validation set, the accuracies for the validation data were nearly identical
to the one of the test data. This reflects the low level of redundancy within
the training dataset, which is shown in Figure S3. We therefore considered
it acceptable to perform a final optimization with 95% of the test dataset
added to the training data. The resulting model is the one uploaded to the
server. This strategy should lead to the most generally applicable model.

3.3 Performance consensus RF and GNN

The consensus using the RF and GNN as input was leading to a minor
improvement of 87% accurracy.

3.4 Webserver implementation

ProteinPrompt is available online as a webserver at:
http://proteinformatics.org/ProteinPrompt

Basic usage is as simple as providing an input sequence. By default,
ProteinPrompt will search our manually curated database of human
proteins, which contains 27,223 sequences. Scanning the entire human
database takes approximately one minute for the default method RF. For
GNN the search is even faster. The consensus has to execute both methods
and therefore requires more time. Other, more extensive databases are
also provided, including mammalian, vertebrate, and metazoan protein
sets. Searching these databases takes considerably longer. For example,
the vertebrate database has 91,592 entries; therefore, searching it takes
approximately three times longer than searching the human protein
database.

The server is free for academic users. Providing an email address is
optional. ProteinPrompt was originally optimized for sequences with a
minimum length of 16 AA. The sequence length of the uploaded proteins
is detected automatically. When the user provides a sequence shorter than
16 AA, a warning appears, but the calculation is still performed. As output,
a ranked and scored list of proteins from the database is returned; this list
can be downloaded.

4 Discussion
ProteinPrompt offers a reliable, fast way to predict protein interaction
partners based on protein sequences. It is available as an easy-to-use online
tool and is thus accessible to non-expert users. In order to develop this
fast, reliable service, we optimized the learning algorithm, the binding
database, and the representations of the sequences. We determined that the
RF algorithm combined with autocorrelation on seven amino acid scales
resulted in the highest accuracy.

We also determined that the GNN method performed nearly as well
as the RF algorithm. To support consensus building, we offer both
implementations on our server. It is remarkable that the RF algorithm,
which is conceptually comparably simple, performs so well on such a
complex task. This is even more remarkable considering that the RF
approach, unlike the GNN, does not include simultaneous optimization
of feature vector creation and model building.

An extensive database with limited redundancy was essential to reliably
test the tool. This database was obtained through several iterations of
manual curation of the test and training datasets. Despite strict separation of
the training and test datasets, which posed a significant learning challenge,
ProteinPrompt turned out to perform very well compared to other available
servers and methods.

ProteinPrompt is reasonably accurate and can scan the entire
human proteome within approximately one minute. To our knowledge,
ProteinPrompt is accurate and currently the fastest online service available
for scanning different proteoms to identify potential binding partners based
on a sequence level. It is reasonable to assume that expanding the training
data would lead to higher accuracy rates.

Based on our extensive tests, we expect ProteinPrompt to support
a better understanding of the complex networks of protein-protein
interactions, which are the basis for a broad range of biological
mechanisms.
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